Strategies for the elimination of matrix effects in the LC-MS/MS analysis of the lipophilic toxins okadaic acid and azaspiracid-1 in molluscan shellfish
نویسندگان
چکیده
Considerable efforts are being made worldwide to replace in vivo assays with instrumental methods of analysis for the monitoring of marine biotoxins in shellfish. Analysis of these compounds by the preferred technique of LC-MS/MS is challenged by matrix effects associated with shellfish tissue components. In methods validation, assessment of matrix interferences is imperative to ensure the accuracy of analytical results. We evaluated matrix interferences in the analysis of okadaic acid (OA) and azaspiracid 1 (AZA1) in mollucscan shellfish by using a conventional acidic method on electrospray triple stage quadrapole (TSQ) and hybrid quadrupole time of flight (QToF) instruments, with matrix matched standards for several species. Using the acidic method, we found no matrix interferences for OA, and matrix suppression for AZA1, with the TSQ instrument; in contrast, we found matrix enhancement for OA, and no matrix interference for AZA1, with QToF. The suppression of AZA1 signal on the TSQ instrument was due to interfering compounds carried over from previous injections. The degree of suppression was dependent on the tissue type, ranging from 20 to 70%. Several strategies were evaluated to eliminate these interferences, including the partitioning of the extract with hexane, optimization of the chromatographic method, and the use of on-line SPE. The use of an alkaline method and a modified acidic method eliminated matrix suppression for AZA1 on the TSQ instrument, while an on-line SPE method proved effective in eliminating matrix enhancement of OA on the QToF. 1 1 2 3 4 5 6
منابع مشابه
Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry.
The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function SPE sorbents was tested. Polymeric sorbents were found to retain most of the toxins. Optimizatio...
متن کاملDistribution of Marine Lipophilic Toxins in Shellfish Products Collected from the Chinese Market
To investigate the prevalence of lipophilic marine biotoxins in shellfish from the Chinese market, we used hydrophilic interaction liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure levels of okadaic acid (OA), azaspiracid (AZA1), pectenotoxin (PTX2), gymnodimine (GYM), and spirolide (SPX1). We collected and analyzed 291 shellfish samples from main production sites along a wid...
متن کاملDiarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine m...
متن کاملDetection of Diarrheic Shellfish Poisoning and Azaspiracid Toxins in Moroccan Mussels: Comparison of the LC-MS Method with the Commercial Immunoassay Kit
Diarrheic shellfish poisoning (DSP) is a recurrent gastrointestinal illness in Morocco, resulting from consumption of contaminated shellfish. In order to develop a rapid and reliable technique for toxins detection, we have compared the results obtained by a commercial immunoassay-"DSP-Check" kit" with those obtained by LC-MS. Both techniques are capable of detecting the toxins in the whole fles...
متن کاملLC-MS/MS analysis of diarrhetic shellfish poisoning (DSP) toxins, okadaic acid and dinophysistoxin analogues, and other lipophilic toxins.
Diarrhetic shellfish poisoning (DSP) is a severe gastrointestinal illness caused by consumption of shellfish contaminated with DSP toxins that are originally produced by toxic dinoflagellates. Based on their structures, DSP toxins were initially classified into three groups, okadaic acid (OA)/dinophysistoxin (DTX) analogues, pectenotoxins (PTXs), and yessotoxins (YTXs). Because PTXs and YTXs ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011